ID HAMMEL

$$-\int_{T_0}^{T_1} \bar{\mathbf{q}} \, \frac{dz}{dT} \, dT \, = \, \bar{\mathbf{q}} L$$

$$\frac{\mathrm{d}T}{^{2}(\bar{\mathbf{q}} - \mathbf{q}_{\mathrm{c}})^{2}}.$$
 (26)

r the variation of the temperature substituted into (14) to yield

$$\frac{sdT}{{}^{2}(\bar{\mathbf{q}} - \mathbf{q}_{c})^{2}}.$$
 (27)

btain comparisons with the experi-

be easily altered in order to arrive essure in circular capillaries. For a ely replaced by $3r^2/2$.

(11) is a good one. We investigate

$$\frac{\beta/dz^2)}{|\bar{\mathbf{q}}^{-1}(d^2\mathbf{q}/dx^2)} \tag{28}$$

re range of interest $(1.15^{\circ} < T < n \sim 5.6$. Let $T/T_{\lambda} = \zeta$ and $\beta_{\lambda} = 0$

$$\beta_{\lambda} \, \zeta^{-(n+2)} \, \frac{d\zeta}{dz} \tag{29}$$

$$\mathbf{i} + \alpha d^2 \mathbf{\bar{q}}^3) \tag{31}$$

$$\frac{1+2-2\zeta^2-4n\zeta^n}{\zeta(1-\zeta^n)} \frac{d\zeta}{dz}.$$
 (32)

From (12) and (13) we obtain the other required coefficient:

$$\frac{d^2\mathbf{q}}{dx^2} = -\frac{12\tilde{\mathbf{q}}}{d^2}. (33)$$

The work of Khalatnikov (8) has indicated that the bulk viscosity may be of the order of ten times the ordinary viscosity, so in estimating an upper limit on R_1 we consider the viscosity term to be $\frac{1}{12}$. Also, the maximum value of \mathbf{q} is $\frac{3}{2}\mathbf{\bar{q}}$. Substituting (30) and (33) into (28) we obtain an expression for R_1 in terms of known or calculable quantities. For $d=2\mu$ and the maximum \mathbf{q} 's encountered in these experiments, Table I presents the maximum value attained by R_1 at several temperatures, from which it is seen that in these experiments $R_1 \ll 1$.

The ratio of the pressure gradients R_p across the slit to those along it may be found from (9) and (10), neglecting the small second term in (9).

$$R_{p} = \frac{\partial P/\partial x}{\partial P/\partial z} = \left(\frac{\eta_{n} + \eta'}{\eta_{n}}\right) \frac{(d\mathbf{q}/dx)(d\beta/dz)}{\beta(d^{2}\mathbf{q}/dx^{2})}$$
(34)

Estimates of the maximum values of R_p are also given in Table I and indicate that except for the largest heat flows in the vicinity of the λ -point the pressure gradient across the slit is negligible compared to that along the slit. By virtue of the relation (16) between ∇P and ∇T the same statement may be made for the temperature gradient, indicating the extent of validity for the assumption made in (8) that T is a function of z alone.

The second order terms in (1) and (2) may be shown to be small in the same way. We are concerned with gradients of the energy in the z direction. In (2) we compare the z component of the left hand side with the z component of ∇P :

$$R_{\rm E} = \frac{\rho_n[\partial(v_n^2/2)/\partial z]}{(\rho_n/\rho)\partial P/\partial z} = \frac{\rho(d/dz)(\beta^2\bar{q}^2)}{(24\eta_n\,\bar{q})/(\rho s T d^2)}.$$
 (35)

Since

$$\beta^{2} = \beta_{\lambda}^{2} \xi^{-2(n+1)},$$

$$R_{\rm E} \sim (n+1)\rho \beta^{3} \bar{q}^{2} (1+\alpha d^{2} \bar{q}^{2}).$$
(36)

TABLE I

Maximum Values of the Ratios R_1 , R_p , and R_E Corresponding to the Maximum Heat Current Density \tilde{q}_{max} at Several Temperatures for SLit I ($d=2~\mu$), $T_0=1.1^{\circ}{
m K}$

T(°K)	Λ (watt/cm ³ – deg).	α (cm²/watt²)	q̄ (watt/ cm²)	R_1	$R_{ m p}$	$R_{ m E}$
1.2	3 × 10 ⁶	6.9×10^{5}	10-1	<10-4	4×10^{-3}	10-3
1.8	7.3×10^{8}	5.2×10^{5}	10	$<10^{-5}$	4×10^{-3}	9×10^{-3}
2.15	3.5×10^{9}	3.3×10^{7}	15	$<10^{-6}$	$<10^{-1}$	3×10^{-2}